论文标题
维持温度差
Sustaining a temperature difference
论文作者
论文摘要
我们得出了最低熵率的表达式,该表达式在不同温度下维持两个储层$ t_0 $和$ t_ \ ell $。法律显示了对相对距离和特征$ \ log^2(t_ \ ell/t_0)$依赖性的直观$ \ ell^{ - 1} $依赖关系。首先,我们根据传导的傅立叶定律(FL)给出了回音的论点,表明最小散落的轮廓是指数级的。然后,我们重新审视一个振荡器链的模型,每个振荡器耦合到热储存库。在大型阻尼的极限中,我们重新侵蚀了指数和平方的行为,提供了FL的自洽推导。对于小型阻尼,“焦点挫败感”导致了众所周知的巴利斯行为,其与佛罗里达州的不相容构成了长期挑战。
We derive an expression for the minimal rate of entropy that sustains two reservoirs at different temperatures $T_0$ and $T_\ell$. The law displays an intuitive $\ell^{-1}$ dependency on the relative distance and a characterisic $\log^2 (T_\ell/T_0)$ dependency on the boundary temperatures. First we give a back-of-envelope argument based on the Fourier Law (FL) of conduction, showing that the least-dissipation profile is exponential. Then we revisit a model of a chain of oscillators, each coupled to a heat reservoir. In the limit of large damping we reobtain the exponential and squared-log behaviors, providing a self-consistent derivation of the FL. For small damping "equipartition frustration" leads to a well-known balistic behaviour, whose incompatibility with the FL posed a long-time challenge.