论文标题

检测和分析YouTube上的综合实体

Detecting and analyzing collusive entities on YouTube

论文作者

Dutta, Hridoy Sankar, Jobanputra, Mayank, Negi, Himani, Chakraborty, Tanmoy

论文摘要

在这项工作中,我们对各种黑市服务培养的YouTube实体进行了深入的分析。之后,我们提出了模型来检测三种类型的YouTube实体 - 寻求串联喜欢的视频,寻求辅助订阅的频道以及寻求合格评论的视频。第三种实体与时间信息相关联。为了分别检测出综合喜欢和订阅的视频和频道,我们利用了经过精选的合奏实体培训的一级分类器和一组新颖的功能。基于SVM的模型分别用于检测辅助视频和辅助频道,表现出显着性能,真正的正速率为0.911和0.910。为了检测寻求综合评论的视频,我们提出了综述,这是一种新颖的端到端神经体系结构,利用已发布评论的时间序列信息以及视频的静态元数据。综合由三个组件 - 元数据特征提取器(从视频中得出基于元数据的特征),异常特征提取器(它利用注释时间序列数据来检测注释活动的突然变化),并注释特征提取器(它利用了在勾结过程中发布的评论文本,并在评论中计算了相似的评论)。广泛的实验表明,综合(真正的正速率为0.905)比基线的有效性。

In this work, we provide an in-depth analysis of collusive entities on YouTube fostered by various blackmarket services. Following this, we propose models to detect three types of collusive YouTube entities - videos seeking collusive likes, channels seeking collusive subscriptions, and videos seeking collusive comments. The third type of entity is associated with temporal information. To detect videos and channels for collusive likes and subscriptions respectively, we utilize one-class classifiers trained on our curated collusive entities and a set of novel features. The SVM-based model shows significant performance with a true positive rate of 0.911 and 0.910 for detecting collusive videos and collusive channels respectively. To detect videos seeking collusive comments, we propose CollATe, a novel end-to-end neural architecture that leverages time-series information of posted comments along with static metadata of videos. CollATe is composed of three components - metadata feature extractor (which derives metadata-based features from videos), anomaly feature extractor (which utilizes the comment time-series data to detect sudden changes in the commenting activity), and comment feature extractor (which utilizes the text of the comments posted during collusion and computes a similarity score between the comments). Extensive experiments show the effectiveness of CollATe (with a true positive rate of 0.905) over the baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源