论文标题

在PG $(2,Q^n)$中的绝对相关点上

On absolute points of correlations in PG$(2,q^n)$

论文作者

D'haeseleer, Jozefien, Durante, Nicola

论文摘要

令$ v $为$(d+1)$ - 字段$ \ mathbb {f} $上的维矢量空间。当反身表现出色时,对$ v $的表格形式在很大程度上进行了研究,因此产生了$ d $ d $二维的投影型太空pg $(v)$的(可能是堕落的)极性。如果$ \ mathbb {f} $是$ {\ mathbb {r}} $,$ {\ mathbb {c}} $或有限firite field $ {\ mathbb {f} _ q q $在本文中,我们考虑$ v = \ mathbb {f} _ {q^n}^3 $的退化,非反射性seSquilinear形式。我们将看到,这些表格引起了Pg $(2,Q^n)$的退化相关性,其绝对积分集除了锥度(可能是退化)$ C_F^m $ seet。在最后一部分中,我们从卑诗省的巨大工作中收集了一些结果。 Kestenband关于Pg $(2,Q^n)$中相关点的集合所闻名的,该$由$ v = \ Mathbb {f} _ {q^n}^3 $的非分级,非反射sesquilinear形式引起的。

Let $V$ be a $(d+1)$-dimensional vector space over a field $\mathbb{F}$. Sesquilinear forms over $V$ have been largely studied when they are reflexive and hence give rise to a (possibly degenerate) polarity of the $d$-dimensional projective space PG$(V)$. Everything is known in this case for both degenerate and non-degenerate reflexive forms if $\mathbb{F}$ is either ${\mathbb{R}}$, ${\mathbb{C}}$ or a finite field ${\mathbb{F}}_q$. In this paper we consider degenerate, non-reflexive sesquilinear forms of $V=\mathbb{F}_{q^n}^3$. We will see that these forms give rise to degenerate correlations of PG$(2,q^n)$ whose set of absolute points are, besides cones, the (possibly degenerate) $C_F^m$-sets. In the final section we collect some results from the huge work of B.C. Kestenband regarding what is known for the set of the absolute points of correlations in PG$(2,q^n)$ induced by a non-degenerate, non-reflexive sesquilinear form of $V=\mathbb{F}_{q^n}^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源