论文标题

寄生间隙的Frobenius代数分析

A Frobenius Algebraic Analysis for Parasitic Gaps

论文作者

Moortgat, Michael, Sadrzadeh, Mehrnoosh, Wijnholds, Gijs

论文摘要

寄生差距的解释是自然语言组成中非线性的表面上。在打字和组合传统中,现有的分类分析依赖于句法复制的明确形式。我们确定了两种类型的寄生虫间隙,其中的语义含量重复可以局限于词典。辅助中的寄生差距被分析为辅助短语头部的多态性型模式的广义配位形式。对于影响相同谓词参数的寄生差距,多态性与引入主要差距的词汇项目有关。我们的分析是根据结构控制方式扩展的Lambek微积分来制定的。构图翻译将句法类型和衍生物与有限维矢量空间的压缩封闭类别和线性图与Frobenius代数上的线性图相关联。当在必要的语义空间上解释时,Frobenius代数提供了建模词汇多态性实例的工具。

The interpretation of parasitic gaps is an ostensible case of non-linearity in natural language composition. Existing categorial analyses, both in the typelogical and in the combinatory traditions, rely on explicit forms of syntactic copying. We identify two types of parasitic gapping where the duplication of semantic content can be confined to the lexicon. Parasitic gaps in adjuncts are analysed as forms of generalized coordination with a polymorphic type schema for the head of the adjunct phrase. For parasitic gaps affecting arguments of the same predicate, the polymorphism is associated with the lexical item that introduces the primary gap. Our analysis is formulated in terms of Lambek calculus extended with structural control modalities. A compositional translation relates syntactic types and derivations to the interpreting compact closed category of finite dimensional vector spaces and linear maps with Frobenius algebras over it. When interpreted over the necessary semantic spaces, the Frobenius algebras provide the tools to model the proposed instances of lexical polymorphism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源