论文标题
用有限的gonation构建图形的树分解
Constructing Tree Decompositions of Graphs with Bounded Gonality
论文作者
论文摘要
在本文中,我们给出了一个建设性的证明,即图表的树宽度最多是其分裂性的。证明给出了一个多项式时间算法,以构建最多$ k $的树木分解,当时给出了达到所有顶点的有效分数$ k $。我们还为两个相关概念给出了类似的结果:稳定的分裂性和稳定的性质。
In this paper, we give a constructive proof of the fact that the treewidth of a graph is at most its divisorial gonality. The proof gives a polynomial time algorithm to construct a tree decomposition of width at most $k$, when an effective divisor of degree $k$ that reaches all vertices is given. We also give a similar result for two related notions: stable divisorial gonality and stable gonality.