论文标题
条件良好的特征值问题溢出
Well-conditioned eigenvalue problems that overflow
论文作者
论文摘要
在本说明中,我们提出了一个参数化的下三角矩阵。特征向量的组成部分迅速增长,并将超过任何有限数量系统的代表性范围。相对于矩阵的组成方相对扰动,特征值和特征向量的条件很好。这类矩阵非常适合测试用于计算特征向量的软件,因为这些例程必须能够成功处理溢出。
In this note we present a parameterized class of lower triangular matrices. The components of the eigenvectors grow rapidly and will exceed the representational range of any finite number system. The eigenvalues and the eigenvectors are well-conditioned with respect to componentwise relative perturbations of the matrix. This class of matrices is well suited for testing software for computing eigenvectors as these routines must be able to handle overflow successfully.