论文标题
Gelfand型二元性二元性,可交换von Neumann代数
Gelfand-type duality for commutative von Neumann algebras
论文作者
论文摘要
我们表明,以下五个类别是等效的:(1)交换性冯·诺伊曼代数的相反类别; (2)紧凑的严格本地化可衡量的可测量空间; (3)可衡量的地区; (4)催眠场所; (5)催眠空间。该结果可以看作是衡量二元性二元性的一种衡量对应物,与霍斯多夫拓扑空间之间的二元性二元性。
We show that the following five categories are equivalent: (1) the opposite category of commutative von Neumann algebras; (2) compact strictly localizable enhanced measurable spaces; (3) measurable locales; (4) hyperstonean locales; (5) hyperstonean spaces. This result can be seen as a measure-theoretic counterpart of the Gelfand duality between commutative unital C*-algebras and compact Hausdorff topological spaces.