论文标题
动态平均场理论和老化动力学
Dynamical Mean-Field Theory and Aging Dynamics
论文作者
论文摘要
动力学平均场理论(DMFT)将多体动力学问题替换为一个自由度的一个自由度,其特征是自以为是的。通过专注于软度无序的$ p $ - 速度相互作用的模型,我们展示了如何将均值衰老理论纳入动态均值场理论中。我们研究了一个慢速时间尺度的病例,静态对应于一步复制对称性(1RSB)阶段,并且具有无限数量缓慢的时间尺度的病例,静态静态相对应与完整的复制对称性断裂(FRSB)相对应。对于前者,我们表明,缓慢自由度的有效温度是通过在短时间(即边缘性)上进行临界动力学行为来固定的。对于后者,我们发现在无限数量的缓慢时间尺度上的老化受随机方程的控制,其中动态演化的时钟是通过有效温度的变化来固定的,因此在FRSB相的基础上获得了随机方程的动态推导。我们的结果将平均衰老理论的领域扩展到了DMFT所持的所有情况。
Dynamical Mean-Field Theory (DMFT) replaces the many-body dynamical problem with one for a single degree of freedom in a thermal bath whose features are determined self-consistently. By focusing on models with soft disordered $p$-spin interactions, we show how to incorporate the mean-field theory of aging within dynamical mean-field theory. We study cases with only one slow time-scale, corresponding statically to the one-step replica symmetry breaking (1RSB) phase, and cases with an infinite number of slow time-scales, corresponding statically to the full replica symmetry breaking (FRSB) phase. For the former, we show that the effective temperature of the slow degrees of freedom is fixed by requiring critical dynamical behavior on short time-scales, i.e. marginality. For the latter, we find that aging on an infinite number of slow time-scales is governed by a stochastic equation where the clock for dynamical evolution is fixed by the change of effective temperature, hence obtaining a dynamical derivation of the stochastic equation at the basis of the FRSB phase. Our results extend the realm of the mean-field theory of aging to all situations where DMFT holds.