论文标题
具有密度差的流体的染色体动力学多释放时间晶格玻尔兹曼计划
Chromodynamic multi-relaxation time lattice Boltzmann scheme for fluids with density difference
论文作者
论文摘要
我们在Dellar之后发展(P. J. Dellar,Phys。E.65,036309(2002),J。Comput。Phys。190,Pp351(2003)),一个多释放时间(MRT),染色体动力学,多组分晶体螺栓杆人晶格(MCLBE)的多种含量流动性,均为iNmissmal a nibissmiss a and flif,它基于Lishchuk的方法(J. U. Brackbill,D。B. Kothe和C. Zemach,J。Comp。Phys。100,335-354(1992),S。V。Lishchuk,C。M。M. Care和I. Halliday,Phys。 (U. d'Ortona,D。Salin,M。Cieplak,R。B. Rybka和J. R. BanavarPhys。Rev.E.51,3718,(1995))。我们专注于基本模型可验证性,但确实将我们的某些数据与以前的方法相关联。 (Y. Ba,H。Liu,Q。Li,Q。Kang和J. Sun,Phys。eRev.E 94,023310(2016))和更早的Liu等人。 (H. Liu,A。J。Valocchi和Q. Kang,Phys。E85,046309(2012)),他开创了较大的密度差异染色性MCLBE,并显示了MRT碰撞模型的实际好处。具体而言,我们通过开发分析基准测量流量来测试染色体动力学MCLBE MRT方案的程度,符合相互不可穿透性的运动条件和连续的牵引条件。我们得出的结论是,我们的数据与BA等人一起验证了MRT染色体动力学MCLBE的效用。
We develop, after Dellar (P. J. Dellar, Phys. Rev. E. 65, 036309 (2002), J. Comput. Phys. 190, pp351 (2003)), a multiple-relaxation time (MRT), chromodynamic, multi-component lattice Boltzmann equation (MCLBE) scheme for simulation of isothermal, immiscible fluid flow with a density contrast. It is based on Lishchuk's method (J. U. Brackbill, D. B. Kothe and C. Zemach, J. Comp. Phys. 100, 335-354 (1992), S. V. Lishchuk, C. M. Care and I. Halliday, Phys. Rev. E. 67(3), 036701(2), (2003)) and the segregation of d'Ortona et al. (U. D'Ortona, D. Salin, M. Cieplak, R. B. Rybka and J. R. Banavar Phys. Rev. E. 51, 3718, (1995)). We focus on fundamental model verifiability but do relate some of our data to that from previous approaches, due to Ba et al. (Y. Ba, H. Liu, Q. Li, Q. Kang and J. Sun, Phys. Rev. E 94, 023310 (2016)) and earlier Liu et al. (H. Liu, A. J. Valocchi and Q. Kang, Phys. Rev. E 85, 046309 (2012)), who pioneered large density difference chromodynamic MCLBE and showed the practical benefits of a MRT collision model. Specifically, we test the extent to which chromodynamic MCLBE MRT schemes comply with the kinematic condition of mutual impenetrability and the continuous traction condition by developing analytical benchmarking flows. We conclude that our data, taken with those of Ba et al., verify the utility of MRT chromodynamic MCLBE.