论文标题

$β-$ ti的elinvar效应,由训练有素的量张量张力模拟

Elinvar effect in $β-$Ti simulated by on-the-fly trained moment tensor potential

论文作者

Shapeev, Alexander V., Podryabinkin, Evgeny V., Gubaev, Konstantin, Tasnádi, Ferenc, Abrikosov, Igor A.

论文摘要

量子力学计算与机器学习(ML)技术的组合可以导致我们从第一原理预测材料特性的能力。在这里,我们表明,通过矩张量描述的原子间电位的直通训练提供了与最先进的{\ it ab Inito}分子动力学相同的准确性,以预测材料的高温度弹性特性,其计算效果较小。使用该技术,我们研究了钛的高温BCC相,并预测其弹性模量非常弱,Elinvar,温度依赖性,类似于所谓的基于Gum Ti的合金的行为[T. T. sato {\ it等},科学{\ bf 300},464(2003)]。鉴于口香糖具有复杂的化学成分并在室温下运行,因此在宽温度间隔1100--1700 K中观察到的元素BCC-TI的Elinvar特性是独一无二的。

A combination of quantum mechanics calculations with machine learning (ML) techniques can lead to a paradigm shift in our ability to predict materials properties from first principles. Here we show that on-the-fly training of an interatomic potential described through moment tensors provides the same accuracy as state-of-the-art {\it ab inito} molecular dynamics in predicting high-temperature elastic properties of materials with two orders of magnitude less computational effort. Using the technique, we investigate high-temperature bcc phase of titanium and predict very weak, Elinvar, temperature dependence of its elastic moduli, similar to the behavior of the so-called GUM Ti-based alloys [T. Sato {\ it et al.}, Science {\bf 300}, 464 (2003)]. Given the fact that GUM alloys have complex chemical compositions and operate at room temperature, Elinvar properties of elemental bcc-Ti observed in the wide temperature interval 1100--1700 K is unique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源