论文标题

通过非会交文本多样化的对话生成

Diversifying Dialogue Generation with Non-Conversational Text

论文作者

Su, Hui, Shen, Xiaoyu, Zhao, Sanqiang, Zhou, Xiao, Hu, Pengwei, Zhong, Randy, Niu, Cheng, Zhou, Jie

论文摘要

在开放域对话生成方面,基于神经网络的序列到序列(SEQ2SEQ)模型严重遭受了低多样性问题。由于平淡无奇的话语通常主导着我们日常chitchat中的频率分布,因此避免它们产生更有趣的响应需要复杂的数据过滤,采样技术或修改训练目标。在本文中,我们提出了一种新的观点,通过利用非围绕文本来使对话产生多样化。与双边对话相比,非会交文本更容易获得,更多样化并涵盖了更广泛的主题。我们从多个来源(包括论坛评论,成语和书籍片段)中收集了一个大规模的非转化语料库。我们进一步提出了一个训练范式,以通过迭代背面翻译有效地合并这些文本。在两个对话数据集上测试了所得模型,并显示出可产生更多不同的响应,而无需牺牲与上下文的相关性。

Neural network-based sequence-to-sequence (seq2seq) models strongly suffer from the low-diversity problem when it comes to open-domain dialogue generation. As bland and generic utterances usually dominate the frequency distribution in our daily chitchat, avoiding them to generate more interesting responses requires complex data filtering, sampling techniques or modifying the training objective. In this paper, we propose a new perspective to diversify dialogue generation by leveraging non-conversational text. Compared with bilateral conversations, non-conversational text are easier to obtain, more diverse and cover a much broader range of topics. We collect a large-scale non-conversational corpus from multi sources including forum comments, idioms and book snippets. We further present a training paradigm to effectively incorporate these text via iterative back translation. The resulting model is tested on two conversational datasets and is shown to produce significantly more diverse responses without sacrificing the relevance with context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源