论文标题

$ k $ - 内态理论,$ \ mathit {tr} $ - trace和zeta函数

$K$-theory of endomorphisms, the $\mathit{TR}$-trace, and zeta functions

论文作者

Campbell, Jonathan A., Lind, John A., Malkiewich, Cary, Ponto, Kate, Zakharevich, Inna

论文摘要

我们表明,特征多项式和lefschetz zeta函数是从$ k $ - 内态理论到拓扑限制同源性(TR)的痕量图的表现。一路上,我们将Lindenstrauss和McCarthy的地图从$ K $ - 内态理论概述到拓扑限制同源性,为任何Waldhausen类别定义了与正交光谱中兼容的富集定义。特别是,这将它们的构造从环扩展到环光谱。我们还对原始的Dennis Trace Map进行了修正主义者的处理,从$ K $ - 理论到拓扑Hochschild同源性(THH),并解释其与Shadow(也称为Trace Theeories)的生物游戏中的痕迹的联系。

We show that the characteristic polynomial and the Lefschetz zeta function are manifestations of the trace map from the $K$-theory of endomorphisms to topological restriction homology (TR). Along the way we generalize Lindenstrauss and McCarthy's map from $K$-theory of endomorphisms to topological restriction homology, defining it for any Waldhausen category with a compatible enrichment in orthogonal spectra. In particular, this extends their construction from rings to ring spectra. We also give a revisionist treatment of the original Dennis trace map from $K$-theory to topological Hochschild homology (THH) and explain its connection to traces in bicategories with shadow (also known as trace theories).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源