论文标题
O(G^3)的极端黑洞散射:重力优势,Eikonal凸起和微分方程
Extremal black hole scattering at O(G^3): graviton dominance, eikonal exponentiation, and differential equations
论文作者
论文摘要
我们使用$ \ Mathcal n = 8 $ Supergravity作为玩具模型,通过散射幅度方法来理解黑洞二进制系统的动态。我们使用Eikonal近似值和有效的野外理论计算了两个极端(半BP)黑洞的经典散射角度的保守部分,其电荷未对准最小(G^3)$,在两种方法之间找到一致。我们通过kaluza-klein减少已知的$ d $二维无质量集成量来构建巨大的循环集成。为了进行集成,我们通过求解Feynman积分的速度微分方程来计算以确切速度依赖性来计算后沟的扩展的新方法,这些方程受到修改的边界条件,这些边界条件隔离了潜在区域的保守贡献。由最新的无质量散射结果的结果进行的,我们将散射角度与Bern等人的结果进行了比较。 al。在爱因斯坦的重力中,发现它们在高能量极限上重合,表明在此顺序时引力占优势。
We use $\mathcal N=8$ supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at $\mathcal O(G^3)$ using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known $D$-dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order.