论文标题
持续的重量更新和平衡传播的卷积架构
Continual Weight Updates and Convolutional Architectures for Equilibrium Propagation
论文作者
论文摘要
平衡传播(EP)是一种用于训练神经网络的重新传播(BP)的替代算法。它适用于由静态输入X喂食的RNN,该X固定在稳定状态下,例如Hopfield Networks。 EP与BP相似,因为在训练的第二阶段中,错误信号在网络层中向后传播,但与BP相反,EP的学习规则在空间上是局部局部的。但是,EP受到了两个主要局限性。一方面,由于其在实时动态方面的表述,EP需要长时间的模拟时间,从而限制了其对实际任务的适用性。另一方面,EP的生物学合理性受到以下事实的限制:其学习规则在时间上不局部:突触更新是在第二阶段的动态收敛之后进行的,并且需要在物理上不再可用的第一阶段信息。我们的工作解决了这两个问题,并旨在将EP的频谱从标准的机器学习模型扩大到更现实的神经网络。首先,我们提出了EP的离散时间公式,该公式能够简化方程,加快训练并将EP扩展到CNN。我们的CNN模型实现了有史以来与EP有关MNIST的最佳性能。使用相同的离散时间公式,我们引入了连续的平衡传播(C-EP):在训练的第二阶段,使用时空中的局部信息在训练的第二阶段不断调整网络的权重。我们表明,在突触强度缓慢变化和较小的裸露的限制下,C-EP等同于BPTT(定理1)。我们在数值上证明了MNIST的定理1和C-EP培训,并将其推广到神经网络的生物现实情况,神经元之间具有不对称连接。
Equilibrium Propagation (EP) is a biologically inspired alternative algorithm to backpropagation (BP) for training neural networks. It applies to RNNs fed by a static input x that settle to a steady state, such as Hopfield networks. EP is similar to BP in that in the second phase of training, an error signal propagates backwards in the layers of the network, but contrary to BP, the learning rule of EP is spatially local. Nonetheless, EP suffers from two major limitations. On the one hand, due to its formulation in terms of real-time dynamics, EP entails long simulation times, which limits its applicability to practical tasks. On the other hand, the biological plausibility of EP is limited by the fact that its learning rule is not local in time: the synapse update is performed after the dynamics of the second phase have converged and requires information of the first phase that is no longer available physically. Our work addresses these two issues and aims at widening the spectrum of EP from standard machine learning models to more bio-realistic neural networks. First, we propose a discrete-time formulation of EP which enables to simplify equations, speed up training and extend EP to CNNs. Our CNN model achieves the best performance ever reported on MNIST with EP. Using the same discrete-time formulation, we introduce Continual Equilibrium Propagation (C-EP): the weights of the network are adjusted continually in the second phase of training using local information in space and time. We show that in the limit of slow changes of synaptic strengths and small nudging, C-EP is equivalent to BPTT (Theorem 1). We numerically demonstrate Theorem 1 and C-EP training on MNIST and generalize it to the bio-realistic situation of a neural network with asymmetric connections between neurons.