论文标题

有限置换组的高度和关系复杂性

On the height and relational complexity of a finite permutation group

论文作者

Gill, Nick, Lodá, Bianca, Spiga, Pablo

论文摘要

令$ g $为$ t $的$ω$的排列组。我们说,如果$λ\subseteqΩ$是独立的集合,则如果其点稳定器不等于$λ$的任何适当子集的点稳定器。我们将$ g $的高度定义为独立集的最大尺寸,并表示此数量$ \ mathrm {h}(g)$。 在本文中,我们研究$ g $原始的情况下的$ \ mathrm {h}(g)$。我们的主要结果断言,$ \ mathrm {h}(g)<9 \ log t $,否则$ g $是在一个特定的经过精心良好的家庭中(“原始的大型基本组”)。该结果的直接推论是对具有较大“关系复杂性”的原始置换群体的表征,后者的数量是Cherlin在对置换基团模型理论的研究中引入的统计量。 我们还研究$ \ mathrm {i}(g)$,是$ g $的不剩余基数的最大长度,在这种情况下,我们证明,如果$ g $是原始的,那么$ \ mathrm {i}(g)<7 \ log t $又是$ g $,又是$ g $,$ g $在某个特定的家庭中(其中包括原始的大型基团)。

Let $G$ be a permutation group on a set $Ω$ of size $t$. We say that $Λ\subseteqΩ$ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $Λ$. We define the height of $G$ to be the maximum size of an independent set, and we denote this quantity $\mathrm{H}(G)$. In this paper we study $\mathrm{H}(G)$ for the case when $G$ is primitive. Our main result asserts that either $\mathrm{H}(G)< 9\log t$, or else $G$ is in a particular well-studied family (the "primitive large--base groups"). An immediate corollary of this result is a characterization of primitive permutation groups with large "relational complexity", the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\mathrm{I}(G)$, the maximum length of an irredundant base of $G$, in which case we prove that if $G$ is primitive, then either $\mathrm{I}(G)<7\log t$ or else, again, $G$ is in a particular family (which includes the primitive large--base groups as well as some others).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源