论文标题

雪线可能是热不稳定的

Snow-lines can be thermally unstable

论文作者

Owen, James E.

论文摘要

原星盘中的挥发性物种可以从蒸气到固体发生相变。这些“雪线”可以在行星形成中起着至关重要的作用,从尘埃凝血到行星迁移。在原球盘的外部区域中,温度曲线是通过固体对重新加工的恒星光吸收来设定的。此外,温度曲线通过在各种雪地上的升华和凝结来设置固体的分布。因此,雪线位置取决于温度剖面,反之亦然。我们表明,这种耦合可能是热不稳定的,因此在雪线上的圆盘片会产生失败的升华或冷凝。这种热不稳定性在中等的光学深度上产生,其中通过从圆盘大气中吸收的重新加工恒星光在光学厚度上加热,但冷却在光学上很薄。由于固相漂移中的挥发物比蒸气相中的挥发物快得多,因此这种热不稳定性导致极限周期。雪线逐渐逐渐流入,凝结挥发物,然后在挥发物升华之前退缩。使用数值模拟,我们研究了CO雪线的演变。我们发现,在典型的碟片条件下,CO雪线在热不稳定下是不稳定的,并且从$ \ sim50 $到$ \ sim30 $ 〜Au在1,000-10,000年的时间表上向内发展。 Co Snowline在$ \ sim 10 \%-50 \%的时间之间花费在较小的分离上,确切的值对总不透明度和动荡的粘度敏感。不断发展的雪线还可以在雪线内部的固体分布中产生类似环形的结构。通过移动雪线创建的多个类似环的结构可以潜在地解释许多{\ it alma}图像中看到的子结构。

Volatile species in protoplanetary discs can undergo a phase change from vapour to solid. These "snow-lines" can play vital roles in planet formation at all scales, from dust coagulation to planetary migration. In the outer regions of protoplanetary discs, the temperature profile is set by the absorption of reprocessed stellar light by the solids. Further, the temperature profile sets the distribution of solids through sublimation and condensation at various snow-lines. Hence the snow-line position depends on the temperature profile and vice-versa. We show that this coupling can be thermally unstable, such that a patch of the disc at a snow-line will produce either run-away sublimation or condensation. This thermal instability arises at moderate optical depths, where heating by absorption of reprocessed stellar light from the disc's atmosphere is optically thick, yet cooling is optically thin. Since volatiles in the solid phase drift much faster than volatiles in the vapour phase, this thermal instability results in a limit-cycle. The snow-line progressively moves in, condensing volatiles, before receding, as the volatiles sublimate. Using numerical simulations, we study the evolution of the CO snow-line. We find the CO snow-line is thermally unstable under typical disc conditions and evolves inwards from $\sim50$ to $\sim30$~AU on timescales from 1,000-10,000 years. The CO snow-line spends between $\sim 10\%-50\%$ of its time at smaller separations, where the exact value is sensitive to the total opacity and turbulent viscosity. The evolving snow-line also creates ring-like structures in the solid distribution interior to the snow-line. Multiple ring-like structures created by moving snow-lines could potentially explain the sub-structures seen in many {\it ALMA} images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源