论文标题

在椭圆形$ W $ -Algebras中的Abelianity线上

On Abelianity Lines in Elliptic $W$-Algebras

论文作者

Avan, Jean, Frappat, Luc, Ragoucy, Eric

论文摘要

我们介绍了$ q $ - 成型的$ w $ algebras的Abelianity条件的系统推导,该条件是由椭圆量量子代数$ \ MATHCAL {a} _ {q,p} \ big(\ wideHat {\ mathfrak {\ mathfrak {gl}}(gl}} {我们在给定的临界表面上确定两组条件,该临界表面在模量空间中产生Abelianity线($ P,Q,C $)。每条线都被确定为遵守双磷酸一致性条件的可数数量的临界表面的相交。然后计算相应的泊松支架结构,以描述一些通用特征。

We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $\mathcal{A}_{q,p}\big(\widehat{\mathfrak{gl}}(N)_{c}\big)$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源