论文标题

学习动态统计歧管

Learning on dynamic statistical manifolds

论文作者

Boso, Francesca, Tartakovsky, Daniel M.

论文摘要

双曲线平衡定律具有不确定的(随机)参数和输入在科学和工程中无处不在。量化此类定律得出的预测中的不确定性,以及通过数据同化的预测不确定性降低仍然是一个开放的挑战。这是由于管理方程式的非线性,其解决方案是高度非高斯且常常不连续的。为了以计算有效的方式改善这些问题,我们使用分布方法,在此,该方法以随机系统状态的累积分布函数(CDF)的时空演化为确定性方程式,作为前向不确定性传播的手段。减少不确定性是通过重述标准损失函数(即用分布术语)进行观测和模型预测之间的差异来实现的。此步骤利用了平方误差差异和kullback-leibler差异之间的等效性。通过添加Lagrangian约束执行CDF方程来实现损失函数。依次进行最小化,随着更多的测量被吸收,逐渐更新CDF方程的参数。

Hyperbolic balance laws with uncertain (random) parameters and inputs are ubiquitous in science and engineering. Quantification of uncertainty in predictions derived from such laws, and reduction of predictive uncertainty via data assimilation, remain an open challenge. That is due to nonlinearity of governing equations, whose solutions are highly non-Gaussian and often discontinuous. To ameliorate these issues in a computationally efficient way, we use the method of distributions, which here takes the form of a deterministic equation for spatiotemporal evolution of the cumulative distribution function (CDF) of the random system state, as a means of forward uncertainty propagation. Uncertainty reduction is achieved by recasting the standard loss function, i.e., discrepancy between observations and model predictions, in distributional terms. This step exploits the equivalence between minimization of the square error discrepancy and the Kullback-Leibler divergence. The loss function is regularized by adding a Lagrangian constraint enforcing fulfillment of the CDF equation. Minimization is performed sequentially, progressively updating the parameters of the CDF equation as more measurements are assimilated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源