论文标题
通过聚合和SLE $_κ$理论的准空随机分析
Quasi-Sure Stochastic Analysis through Aggregation and SLE$_κ$ Theory
论文作者
论文摘要
我们研究SLE $_κ$理论,并通过汇总进行了准溶的随机分析元素。具体而言,我们展示了如何使用后者来构建sle $_κ$ traces quasi-sury(即同时用于具有某些属性的概率度量的家族),以$κ\ in \ Mathcal {k} \ cap \ cap \ cap \ cap \ mathbb {r} $ε> 0 $带有$ \ Mathcal {k} \ subset \ mathbb {r} _ {+} $一个非平凡的紧凑间隔,即,对于所有$κ$,这些$κ$都不是零,并且与$ 8 $不同。作为分析的副产品,我们用这种语言显示了所有$_κ$ traces $κ$ traces的连续性版本,所有$κ$紧凑的间隔如上所述。
We study SLE$_κ$ theory with elements of Quasi-Sure Stochastic Analysis through Aggregation. Specifically, we show how the latter can be used to construct the SLE$_κ$ traces quasi-surely (i.e. simultaneously for a family of probability measures with certain properties) for $κ\in \mathcal{K}\cap \mathbb{R}_+ \setminus ([0, ε) \cup \{8\})$, for any $ε>0$ with $\mathcal{K} \subset \mathbb{R}_{+}$ a nontrivial compact interval, i.e. for all $κ$ that are not in a neighborhood of zero and are different from $8$. As a by-product of the analysis, we show in this language a version of the continuity in $κ$ of the SLE$_κ$ traces for all $κ$ in compact intervals as above.