论文标题
拓扑欧拉类作为光学晶格中的动力学观察
Topological Euler class as a dynamical observable in optical lattices
论文作者
论文摘要
最后几年见证了平衡系统拓扑表征的快速进步。我们在这样的动态环境中报告了一种新型拓扑类型的拓扑 - 欧拉类的稳健签名。神秘的不变性$(ξ)$落在传统的对称性 - eigenvalue之外,表明阶段,在最简单的化身中,由构成无间隙对的乐队的三元组来描述,其中包含$2ξ$稳定的频段节点节点和一个宽大的频段。这些节点具有非亚洲电荷,可以通过将其指控转换为复杂的编织机制,从而进一步撤消,这表明Euler类是一种脆弱的拓扑结构。从理论上讲,我们证明了非平凡的欧拉汉密尔顿淬火会导致稳定的单子 - 抗抗斜杆对,这又引起了第一个HOPF图下的动量轨迹的链接,从而使实验可观察到了不变的。我们的结果详细介绍了各种冷原子设置中的显式断层扫描协议,为探索新的拓扑及其与范式晶格的Chern绝缘子的光学晶格对称性的相互作用提供了一个基础。
The last years have witnessed rapid progress in the topological characterization of out-of-equilibrium systems. We report on robust signatures of a new type of topology -- the Euler class -- in such a dynamical setting. The enigmatic invariant $(ξ)$ falls outside conventional symmetry-eigenvalue indicated phases and, in simplest incarnation, is described by triples of bands that comprise a gapless pair, featuring $2ξ$ stable band nodes, and a gapped band. These nodes host non-Abelian charges and can be further undone by converting their charge upon intricate braiding mechanisms, revealing that Euler class is a fragile topology. We theoretically demonstrate that quenching with non-trivial Euler Hamiltonian results in stable monopole-antimonopole pairs, which in turn induce a linking of momentum-time trajectories under the first Hopf map, making the invariant experimentally observable. Detailing explicit tomography protocols in a variety of cold-atom setups, our results provide a basis for exploring new topologies and their interplay with crystalline symmetries in optical lattices beyond paradigmatic Chern insulators.