论文标题
多级模型的组异质性评估
Group Heterogeneity Assessment for Multilevel Models
论文作者
论文摘要
例如,由于对同一观察单元的重复测量,许多数据集都包含固有的多级结构。考虑到这种结构对于对此类数据进行的任何统计分析的准确性和校准至关重要。但是,大量可能的模型配置阻碍了多级模型在实践中的使用。在这项工作中,我们提出了一个灵活的框架,用于有效评估数据中给定分组变量之间的差异。评估的组异质性对于在多级模型中选择要考虑的相关组系数很有价值。我们的经验评估表明,该框架可以在模拟和真实数据集中可靠地识别相关的多级组件。
Many data sets contain an inherent multilevel structure, for example, because of repeated measurements of the same observational units. Taking this structure into account is critical for the accuracy and calibration of any statistical analysis performed on such data. However, the large number of possible model configurations hinders the use of multilevel models in practice. In this work, we propose a flexible framework for efficiently assessing differences between the levels of given grouping variables in the data. The assessed group heterogeneity is valuable in choosing the relevant group coefficients to consider in a multilevel model. Our empirical evaluations demonstrate that the framework can reliably identify relevant multilevel components in both simulated and real data sets.