论文标题

定制精确数学库探索,用于代码分析和优化

Custom-Precision Mathematical Library Explorations for Code Profiling and Optimization

论文作者

Defour, David, Castro, Pablo de Oliveira, Istoan, Matei, Petit, Eric

论文摘要

用于科学计算的典型处理器具有固定宽度的数据路径。这意味着数学库是专门针对这些固定精度的每个库(binary16,binary32,binary64)的。但是,为了满足科学应用程序不断增长的能耗和吞吐量的要求,图书馆和硬件设计师正在超越这种千篇一律的方法。在本文中,我们建议研究在涉及数学功能的计算中使用用户定义的浮点格式和目标精度的效果和好处。我们的工具收集输入数据配置文件,并迭代地探讨了用户应用程序中数学功能的每个呼叫点的较低精度。这些分析数据将是用于专门为给定应用程序实现数学功能实现的宝贵资产。我们在卫星跟踪应用程序SGP4上演示了该工具的功能。配置文件数据显示了专业化的潜力,并提供了回答回答基本功能评估的可变精确设计在哪里有用的。

The typical processors used for scientific computing have fixed-width data-paths. This implies that mathematical libraries were specifically developed to target each of these fixed precisions (binary16, binary32, binary64). However, to address the increasing energy consumption and throughput requirements of scientific applications, library and hardware designers are moving beyond this one-size-fits-all approach. In this article we propose to study the effects and benefits of using user-defined floating-point formats and target accuracies in calculations involving mathematical functions. Our tool collects input-data profiles and iteratively explores lower precisions for each call-site of a mathematical function in user applications. This profiling data will be a valuable asset for specializing and fine-tuning mathematical function implementations for a given application. We demonstrate the tool's capabilities on SGP4, a satellite tracking application. The profile data shows the potential for specialization and provides insight into answering where it is useful to provide variable-precision designs for elementary function evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源