论文标题
详细的平衡和人脑的熵产生
Broken detailed balance and entropy production in the human brain
论文作者
论文摘要
生活系统在小尺度上打破详细的平衡,消耗能量并在环境中产生熵,以执行分子和细胞功能。但是,尚不清楚详细的平衡如何在宏观尺度上表现出来,以及这种动力学如何支持高阶生物学功能。在这里,我们提出了一个框架,通过测量宏观系统中的熵产生来量化破裂的详细平衡。我们将我们的方法应用于人类大脑,它的器官巨大的代谢消耗驱动了多种认知功能。使用全脑成像数据,我们证明了在静止时大脑几乎遵守详细的平衡,但是在身体和认知要求的任务上执行时会严重打破详细的平衡。我们使用动态ISING模型表明,这些大规模违反详细平衡的行为可能会从元素之间的相互作用中的精细尺度不对称(神经系统的已知特征)中出现。总之,这些结果表明违反详细平衡对于认知至关重要,并提供了量化宏观系统中熵产生的一般工具。
Living systems break detailed balance at small scales, consuming energy and producing entropy in the environment in order to perform molecular and cellular functions. However, it remains unclear how broken detailed balance manifests at macroscopic scales, and how such dynamics support higher-order biological functions. Here we present a framework to quantify broken detailed balance by measuring entropy production in macroscopic systems. We apply our method to the human brain, an organ whose immense metabolic consumption drives a diverse range of cognitive functions. Using whole-brain imaging data, we demonstrate that the brain nearly obeys detailed balance when at rest, but strongly breaks detailed balance when performing physically and cognitively demanding tasks. Using a dynamic Ising model, we show that these large-scale violations of detailed balance can emerge from fine-scale asymmetries in the interactions between elements, a known feature of neural systems. Together, these results suggest that violations of detailed balance are vital for cognition, and provide a general tool for quantifying entropy production in macroscopic systems.