论文标题
量子平均现场游戏
Quantum mean field games
论文作者
论文摘要
量子游戏代表了游戏理论的真正21世纪分支,与量子计算和量子技术的现代发展密切相关。到目前为止,这些事态发展的主要重音是在固定或重复的游戏上做出的。在作者的上一篇论文中,真正的动态量子游戏理论是由玩家实时选择的策略发起的。由于已知直接连续观测会破坏量子演变(所谓的量子Zeno Paradox),因此量子动态游戏的必要新成分代表了非直接观察的理论和相应的量子滤波。游戏理论的另一个杰出的21世纪分支代表了所谓的平均场景游戏(MFG),并具有令人印象深刻且不断增长的发展。 在本文中,我们将这两个令人兴奋的游戏理论分支合并。建立MFG的量子类似物需要对其基础和方法进行全面重建,因为在$ N $ - 粒子量子量子进化中并未在个体动力学中分离,并且经典MFG理论的关键概念,其经验度量定义为玩家位置的狄拉克质量之和,不适用于量子设置。 作为初步结果,我们得出了新的非线性随机schrödinger方程,作为大量相互作用量子粒子的连续观察和受控系统的极限,其结果可能具有独立的值。然后,我们证明,在相互作用粒子的控制量子系统中,那里的经典相互作用粒子与相同的限制MFG系统相对应,该系统定义在适当的Riemanian歧管上。该系统的解决方案显示出针对$ n $ agent量子游戏的近似NASH平衡。
Quantum games represent the really 21st century branch of game theory, tightly linked to the modern development of quantum computing and quantum technologies. The main accent in these developments so far was made on stationary or repeated games. In the previous paper of the author the truly dynamic quantum game theory was initiated with strategies chosen by players in real time. Since direct continuous observations are known to destroy quantum evolutions (so-called quantum Zeno paradox) the necessary new ingredient for quantum dynamic games represented the theory of non-direct observations and the corresponding quantum filtering. Another remarkable 21st century branch of game theory represent the so-called mean-field games (MFG), with impressive and ever growing development. In this paper we are merging these two exciting new branches of game theory. Building a quantum analog of MFGs requires the full reconstruction of its foundations and methodology, because in $N$-particle quantum evolution particles are not separated in individual dynamics and the key concept of the classical MFG theory, the empirical measure defined as the sum of Dirac masses of the positions of the players, is not applicable in quantum setting. As a preliminary result we derive the new nonlinear stochastic Schrödinger equation, as the limit of continuously observed and controlled system of large number of interacting quantum particles, the result that may have an independent value. We then show that to a control quantum system of interacting particles there corresponds a special system of classical interacting particles with the identical limiting MFG system, defined on an appropriate Riemanian manifold. Solutions of this system are shown to specify approximate Nash equilibria for $N$-agent quantum games.