论文标题

当投票变更时,委员会应(不)

When Votes Change and Committees Should (Not)

论文作者

Bredereck, Robert, Fluschnik, Till, Kaczmarczyk, Andrzej

论文摘要

选举一个小规模的委员会是一个古典且充分理解的投票情况。我们对一系列委员会感兴趣,我们介绍并研究了两个基于简单多元投票的时间依赖的多阶段模型。在其中,我们将在同一组代理商和候选人上给我们一系列投票概况(阶段),我们的任务是为每个高分的每个阶段找到一个小委员会。在保守模型中,我们还要求任何两个连续的委员会都具有微小的对称差异。类似地,在革命模型中,我们需要巨大的对称差异。即使对于恒定数量的代理,我们也证明这两个模型都是NP螺旋,并且基于此,对最自然的参数及其组合启动了参数化的复杂性分析。除其他结果外,我们证明这两个模型都在XP中,但有关阶段数量的数量[1] - 革命性似乎比保守的“更容易”:如果(下层)在对称差异的尺寸上(上层)绑定的对称差异的大小是恒定的,那么保守模型仍然是NP-HARD,而革命性模型则将成为多态度的可溶剂可溶解。

Electing a single committee of a small size is a classical and well-understood voting situation. Being interested in a sequence of committees, we introduce and study two time-dependent multistage models based on simple Plurality voting. Therein, we are given a sequence of voting profiles (stages) over the same set of agents and candidates, and our task is to find a small committee for each stage of high score. In the conservative model we additionally require that any two consecutive committees have a small symmetric difference. Analogously, in the revolutionary model we require large symmetric differences. We prove both models to be NP-hard even for a constant number of agents, and, based on this, initiate a parameterized complexity analysis for the most natural parameters and combinations thereof. Among other results, we prove both models to be in XP yet W[1]-hard regarding the number of stages, and that being revolutionary seems to be "easier" than being conservative: If the (upper- resp. lower-) bound on the size of symmetric differences is constant, the conservative model remains NP-hard while the revolutionary model becomes polynomial-time solvable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源