论文标题
使用神经网络预测辐射转移计算的大气光学特性
Predicting atmospheric optical properties for radiative transfer computations using neural networks
论文作者
论文摘要
辐射传递方程是众所周知的,但是大气模型中的辐射参数化在计算上很昂贵。加速参数化的有前途的工具是使用机器学习技术。在这项研究中,我们通过训练神经网络模仿现代辐射参数化(RRTMGP),为气体光学特性开发基于机器学习的参数化。为了最大程度地减少计算成本,我们减少了神经网络适用的大气条件的范围,并使用机器特定的优化BLAS功能来加速矩阵计算。为了生成训练数据,我们使用一组随机扰动的大气轮廓,并使用RRTMGP计算光学特性。与RRTMGP相比,预测的光学特性是高度精确的,并且所得的辐射通量在\ si {0.5} {\ flux}之内具有平均误差。我们的基于神经网络的气体光学参数化的速度比RRTMGP快4倍,具体取决于神经网络的大小。我们通过训练神经网络的速度和准确性之间的折衷进一步测试了单个大涡模拟的大气条件范围狭窄的范围,因此更小,更快的网络可以达到所需的准确性。我们得出的结论是,基于机器学习的参数化可以加快辐射转移计算,同时保持高精度。
The radiative transfer equations are well-known, but radiation parametrizations in atmospheric models are computationally expensive. A promising tool for accelerating parametrizations is the use of machine learning techniques. In this study, we develop a machine learning-based parametrization for the gaseous optical properties by training neural networks to emulate a modern radiation parameterization (RRTMGP). To minimize computational costs, we reduce the range of atmospheric conditions for which the neural networks are applicable and use machine-specific optimised BLAS functions to accelerate matrix computations. To generate training data, we use a set of randomly perturbed atmospheric profiles and calculate optical properties using RRTMGP. Predicted optical properties are highly accurate and the resulting radiative fluxes have average errors within \SI{0.5}{\flux} compared to RRTMGP. Our neural network-based gas optics parametrization is up to 4 times faster than RRTMGP, depending on the size of the neural networks. We further test the trade-off between speed and accuracy by training neural networks for the narrow range of atmospheric conditions of a single large-eddy simulation, so smaller and therefore faster networks can achieve a desired accuracy. We conclude that our machine learning-based parametrization can speed-up radiative transfer computations whilst retaining high accuracy.