论文标题

在矢量价值的hardy空间中,扰动的toeplitz运算符的内核

Kernels of Perturbed Toeplitz Operators in vector-valued Hardy spaces

论文作者

Chattopadhyay, Arup, Das, Soma, Pradhan, Chandan

论文摘要

最近,Liang和Partington \ cite {yp}表明,Toeplitz运营商的有限级扰动的核几乎是不变的,而在标量值的耐受性耐受性空间上的向后移动操作员下方有限缺陷。在本文中,我们提供了Liang和Partington结果的矢量概括。作为立即应用,我们通过应用最近的定理(\ cite {cdp {cdp或}),在各种重要情况下,在各种重要情况下向后移动不变子空间来识别扰动的toeplitz操作员的内核,该子空间与几乎不变的子空间相关的是在向量偏差的硬性硬化型硬化的核能上的近距离偏移操作员的几乎不变的子空间。

Recently, Liang and Partington \cite{YP} show that kernels of finite-rank perturbations of Toeplitz operators are nearly invariant with finite defect under the backward shift operator acting on the scalar-valued Hardy space. In this article we provide a vectorial generalization of a result of Liang and Partington. As an immediate application we identify the kernel of perturbed Toeplitz operator in terms of backward shift-invariant subspaces in various important cases by applying the recent theorem (\cite{CDP, OR}) in connection with nearly invariant subspaces of finite defect for the backward shift operator acting on the vector-valued Hardy space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源