论文标题
重叠的蒙特卡洛模拟
Monte-Carlo simulations of overlap Majorana fermions
论文作者
论文摘要
四个维度中的超对称阳米尔(Sym)理论表现出许多有趣的非扰动现象,这些现象可以通过蒙特卡洛晶格模拟进行研究。但是,晶格正则化明确地断裂了超对称性,通常需要对大量参数进行微调以正确地将理论推断到连续性极限。从这个角度来看,重要的是要在原始连续作用的尽可能多的晶格上保存。手性对称性例如防止费米质量的添加性重新归一化。如果Dirac操作员满足了Ginsparg-Wilson的关系,则可以保留(修改的)手性对称性。在这项贡献中,我们使用重叠形式主义对N = 1超对称的Yang-Mills理论进行了探索性非扰动研究,以保留非零晶格间距的手性对称性。 n = 1 Sym是将我们的研究扩展到更复杂的超对称理论的理想基准,因为唯一要调整的参数是Gluino质量。因此,重叠的费用允许在不进行微调的情况下模拟该理论。我们将我们的方法与对同一理论的先前研究进行了比较,并提出了Gluino凝结的明确证据。
Supersymmetric Yang-Mills (SYM) theories in four dimensions exhibit many interesting non-perturbative phenomena that can be studied by means of Monte Carlo lattice simulations. However, the lattice regularization breaks supersymmetry explicitly, and in general a fine tuning of a large number of parameters is required to correctly extrapolate the theory to the continuum limit. From this perspective, it is important to preserve on the lattice as many symmetries of the original continuum action as possible. Chiral symmetry for instance prevents an additive renormalization of the fermion mass. A (modified) version of chiral symmetry can be preserved exactly if the Dirac operator fulfills the Ginsparg-Wilson relation. In this contribution, we present an exploratory non-perturbative study of N=1 supersymmetric Yang-Mills theory using the overlap formalism to preserve chiral symmetry at non-zero lattice spacings. N=1 SYM is an ideal benchmark toward the extension of our studies to more complex supersymmetric theories, as the only parameter to be tuned is the gluino mass. Overlap fermions allow therefore to simulate the theory without fine-tuning. We compare our approach to previous investigations of the same theory, and we present clear evidences for gluino condensation.