论文标题

荣誉论文:分级$ kk $的精确序列 - cuntz-pimsner代数的理论

Honours thesis: Exact sequences in graded $KK$-theory for Cuntz-Pimsner algebras

论文作者

Patterson, Quinn

论文摘要

在这篇论文中,我们概括了在Kumjian,Pask和Sims(2017)论文中获得的分级$ kk $理论中的六项精确序列,以允许使用非紧凑型左动作的对应关系。特别是,这使我们能够计算排列的$ kk $ - 行无限图的理论。我们开发了遵循Kumjian,Pask和Sims以及Pimsner(1997)的论点所必需的理论,并提供了有关希尔伯特模块的详细部分,$ C^*$ - 通讯,交叉产品,Toeplitz代数,Cuntz-Pimsner代数和$ KK $ - theore。

In this thesis we generalise the six-term exact sequence in graded $KK$-theory obtained in a paper of Kumjian, Pask and Sims (2017) to allow correspondences with non-compact left action. In particular, this allows us to compute the graded $KK$-theory of row-infinite graphs. We develop the theory necessary for following the arguments of Kumjian, Pask and Sims and of Pimsner (1997), with detailed sections on Hilbert modules, $C^*$-correspondences, Crossed products, Toeplitz algebras, Cuntz-Pimsner algebras and $KK$-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源