论文标题
PowerPlanningDL:使用深度学习的芯片电网设计的可靠性感知框架
PowerPlanningDL: Reliability-Aware Framework for On-Chip Power Grid Design using Deep Learning
论文作者
论文摘要
随着芯片设计的复杂性的提高,VLSI物理设计已成为一项耗时的任务,这是一个迭代设计过程。电源计划是VLSI物理设计中平地平面图的一部分,在该设计中,设计电网网络是为了为所有基础功能块提供足够的功率。功率规划还需要多个迭代步骤来创建电网网络,同时满足允许的最差IR跌落和电气移动(EM)边距。本文首次介绍了基于深度学习(DL)的框架,以大致预测电网网络的初始设计,并考虑到不同的可靠性约束。提出的框架减少了许多迭代设计步骤,并加快了总设计周期。基于神经网络的多目标回归技术用于创建DL模型。完成功能提取,并从IBM处理器提取的一些电网设计的平面图中生成训练数据集。使用生成的数据集对DL模型进行训练。提出的基于DL的框架将使用一组新的电网规格进行验证(通过驱动训练阶段中使用的设计获得)。结果表明,预测的电网设计更接近原始设计,其预测误差最小(约2%)。提出的基于DL的方法还可以通过标准电网基准的速度约为6倍来改善设计周期时间。
With the increase in the complexity of chip designs, VLSI physical design has become a time-consuming task, which is an iterative design process. Power planning is that part of the floorplanning in VLSI physical design where power grid networks are designed in order to provide adequate power to all the underlying functional blocks. Power planning also requires multiple iterative steps to create the power grid network while satisfying the allowed worst-case IR drop and Electromigration (EM) margin. For the first time, this paper introduces Deep learning (DL)-based framework to approximately predict the initial design of the power grid network, considering different reliability constraints. The proposed framework reduces many iterative design steps and speeds up the total design cycle. Neural Network-based multi-target regression technique is used to create the DL model. Feature extraction is done, and the training dataset is generated from the floorplans of some of the power grid designs extracted from the IBM processor. The DL model is trained using the generated dataset. The proposed DL-based framework is validated using a new set of power grid specifications (obtained by perturbing the designs used in the training phase). The results show that the predicted power grid design is closer to the original design with minimal prediction error (~2%). The proposed DL-based approach also improves the design cycle time with a speedup of ~6X for standard power grid benchmarks.