论文标题
复杂的投影平面中的真实高度曲面满足涉及$δ(2)$的平等性
Real hypersurfaces in the complex projective plane satisfying an equality involving $δ(2)$
论文作者
论文摘要
在陈的论文\ cite {chen}中证明,在恒定的全态截面曲率$ 4 $ 4 $ 4 $ 4 $ 4 $δ(2)\ leq \ frac {9} {4} {4} h^2+5,$ h $ h $是平均曲率和$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)$Δ(2)在本文中,我们研究了非HOPF真实的超曲面,这些曲面满足了不等式的平等案例,即平均曲率沿着Reeb vector场的每个积分曲线恒定。我们描述了如何获得所有此类超曲面。
It was proved in Chen's paper \cite{chen} that every real hypersurface in the complex projective plane of constant holomorphic sectional curvature $4$ satisfies $$ δ(2)\leq \frac{9}{4}H^2+5,$$ where $H$ is the mean curvature and $δ(2)$ is a $δ$-invariant introduced by him. In this paper, we study non-Hopf real hypersurfaces satisfying the equality case of the inequality under the condition that the mean curvature is constant along each integral curve of the Reeb vector field. We describe how to obtain all such hypersurfaces.