论文标题

高度邻居中心对称球的新家庭

New families of highly neighborly centrally symmetric spheres

论文作者

Novik, Isabella, Zheng, Hailun

论文摘要

1995年,Josckusch建造了一个无限的中央对称家族(CS,简称为简短的三角剖分),其3 $ -SPHERES的CS- $ 2 $ -2 $ -NEIGHBORLY。最近,Novik和Zheng扩展了Jockusch的建筑:对于所有$ d $和$ n> d $,他们构建了$ d $ -sphere的CS三角测量,带有$ 2N $ Vertices,$Δ^d_n $,即CS-$ \ lceil d/2 \ lceil d/2 \ rceil $ -neigh-neigh $ - neigh-neigh $。在这里,提供了几种与$δ^d_n $有关的新CS构造。结果表明,对于所有$ k> 2 $和一个足够大的$ n $,还有另一个CS三角剖分(2k-1)$ - 带有$ 2N $的顶点的cs- $ k $ neighborly,而对于$ k = 2 $,则$ω(2^n)$ pairwise y pairwise dopywise nonwise nonwise nonwise nonwise nonwise nocywise nor-Isomorphic triangulations。还表明,对于所有$ k> 2 $和一个足够大的$ n $,有$ω(2^n)$成对的非同构CS CS三角形的$(2K-1)$ - 带有$ 2N $的顶点的$ 2N $ VERTICES,是CS-$($(K-1)$ - 邻居。这些结构基于研究$δ^d_n $的方面,尤其是在某些必要的和一些足够的条件下,精神与大风的均匀条件相似。一路上证明,Jockusch的Spheres $δ^3_n $是可撒的,对Murai的肯定答案 - 尼沃关于$ 2 $的可壳可壳的问题。

In 1995, Josckusch constructed an infinite family of centrally symmetric (cs, for short) triangulations of $3$-spheres that are cs-$2$-neighborly. Recently, Novik and Zheng extended Jockusch's construction: for all $d$ and $n>d$, they constructed a cs triangulation of a $d$-sphere with $2n$ vertices, $Δ^d_n$, that is cs-$\lceil d/2\rceil$-neighborly. Here, several new cs constructions, related to $Δ^d_n$, are provided. It is shown that for all $k>2$ and a sufficiently large $n$, there is another cs triangulation of a $(2k-1)$-sphere with $2n$ vertices that is cs-$k$-neighborly, while for $k=2$ there are $Ω(2^n)$ such pairwise non-isomorphic triangulations. It is also shown that for all $k>2$ and a sufficiently large $n$, there are $Ω(2^n)$ pairwise non-isomorphic cs triangulations of a $(2k-1)$-sphere with $2n$ vertices that are cs-$(k-1)$-neighborly. The constructions are based on studying facets of $Δ^d_n$, and, in particular, on some necessary and some sufficient conditions similar in spirit to Gale's evenness condition. Along the way, it is proved that Jockusch's spheres $Δ^3_n$ are shellable and an affirmative answer to Murai--Nevo's question about $2$-stacked shellable balls is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源