论文标题

基于图像衍生的四树和泊松磁盘采样的有损事件压缩

Lossy Event Compression based on Image-derived Quad Trees and Poisson Disk Sampling

论文作者

Banerjee, Srutarshi, Wang, Zihao W., Chopp, Henry H., Cossairt, Oliver, Katsaggelos, Aggelos

论文摘要

凭借与常规RGB摄像机相比,事件摄像机为通过快速运动,高动态范围和/或功率限制的具有挑战性的方案提供了新的机会来解决视觉任务。然而,与图像/视频压缩不同,事件压缩算法的性能远非令人满意和实用。压缩事件的主要挑战是唯一的事件数据形式,即,一个异步射击的事件元组每个编码2D空间位置,时间戳和极性(表示亮度增加或减小)。由于事件仅编码时间变化,因此缺乏空间结构,这对于压缩至关重要。为了解决这个问题,我们根据来自相邻强度图像得出的Quad树(QT)分割图提出了一种新型事件压缩算法。 QT在3D时空量内通知2D空间优先级。在编码步骤的情况下,随着时间的推移,事件首先是汇总的,以形成基于极性的事件直方图。然后,通过基于QT的分割图优先采样的Poisson磁盘采样,将直方图可变。接下来,使用差分编码和运行长度编码用于编码采样事件的空间和极性信息,然后是Huffman编码以生成最终编码的事件。我们的基于POISSON磁盘采样的有损耗事件压缩(PDS-LEC)算法可执行基于速率延伸的最佳分配。与最新状态相比,我们的算法平均达到了6倍的压缩。

With several advantages over conventional RGB cameras, event cameras have provided new opportunities for tackling visual tasks under challenging scenarios with fast motion, high dynamic range, and/or power constraint. Yet unlike image/video compression, the performance of event compression algorithm is far from satisfying and practical. The main challenge for compressing events is the unique event data form, i.e., a stream of asynchronously fired event tuples each encoding the 2D spatial location, timestamp, and polarity (denoting an increase or decrease in brightness). Since events only encode temporal variations, they lack spatial structure which is crucial for compression. To address this problem, we propose a novel event compression algorithm based on a quad tree (QT) segmentation map derived from the adjacent intensity images. The QT informs 2D spatial priority within the 3D space-time volume. In the event encoding step, events are first aggregated over time to form polarity-based event histograms. The histograms are then variably sampled via Poisson Disk Sampling prioritized by the QT based segmentation map. Next, differential encoding and run length encoding are employed for encoding the spatial and polarity information of the sampled events, respectively, followed by Huffman encoding to produce the final encoded events. Our Poisson Disk Sampling based Lossy Event Compression (PDS-LEC) algorithm performs rate-distortion based optimal allocation. On average, our algorithm achieves greater than 6x compression compared to the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源