论文标题

结构渔业中的平方根法律

Square Root Laws in Structured Fisheries

论文作者

Filar, Jerzy, Streipert, Sabrina

论文摘要

我们在渔业的背景下介绍了网络扩散术语,并在经济和可持续发展的增殖和网络增殖之间建立了关系。在贝弗顿 - 荷尔特复发之后,通过分析得出的物种得出的平方根定律,但我们表明,也可以用作其他模型的参考点。这些分析得出的平方根定律的实际相关性在澳大利亚彭塔里亚南部的海湾捕虫渔业上进行了测试。贝弗顿荷尔特模型(包括用于模型不确定性的随机性)适合该渔业的捕获和丰度指数的时间序列。模拟表明,尽管有随机性,但根据平方根定律,人口水平仍然可持续。该应用程序具有其遗传模型的不确定性,引发了关于种群低于不可持续阈值的概率的风险敏感性分析。这种敏感性的表征有助于理解过度捕捞和潜在补救措施的危险。

We introduce the term net-proliferation in the context of fisheries and establish relations between the proliferation and net-proliferation that are economically and sustainably favored. The resulting square root laws are analytically derived for species following the Beverton-Holt recurrence but, we show, can also serve as reference points for other models. The practical relevance of these analytically derived square root laws is tested on the the Barramundi fishery in the Southern Gulf of Carpentaria, Australia. A Beverton-Holt model, including stochasticity to account for model uncertainty, is fitted to a time series of catch and abundance index for this fishery. Simulations show, that despite the stochasticity, the population levels remain sustainable under the square root law. The application, with its inherited model uncertainty, sparks a risk sensitivity analysis regarding the probability of populations falling below an unsustainable threshold. Characterization of such sensitivity helps in the understanding of both dangers of overfishing and potential remedies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源