论文标题

从组成神经网络中获得忠实的解释

Obtaining Faithful Interpretations from Compositional Neural Networks

论文作者

Subramanian, Sanjay, Bogin, Ben, Gupta, Nitish, Wolfson, Tomer, Singh, Sameer, Berant, Jonathan, Gardner, Matt

论文摘要

神经模块网络(NMN)是建模组成性的一种流行方法:当应用于语言和视觉问题时,它们具有很高的精度,同时反映了网络体系结构中问题的组成结构。但是,先前的工作隐含地假设网络模块的结构描述了抽象的推理过程,为模型的推理提供了忠实的解释。也就是说,所有模块都执行其预期行为。在这项工作中,我们对NLVR2和Drop上NMN的中间输出进行了系统评估,这是两个需要组成多个推理步骤的数据集。我们发现中间输出与预期的输出有所不同,这说明网络结构并未提供对模型行为的忠实解释。为了解决这个问题,我们通过辅助监督训练该模型,并为模块体系结构提出了特定的选择,这些选择会产生更好的忠诚,而准确性的成本最低。

Neural module networks (NMNs) are a popular approach for modeling compositionality: they achieve high accuracy when applied to problems in language and vision, while reflecting the compositional structure of the problem in the network architecture. However, prior work implicitly assumed that the structure of the network modules, describing the abstract reasoning process, provides a faithful explanation of the model's reasoning; that is, that all modules perform their intended behaviour. In this work, we propose and conduct a systematic evaluation of the intermediate outputs of NMNs on NLVR2 and DROP, two datasets which require composing multiple reasoning steps. We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour. To remedy that, we train the model with auxiliary supervision and propose particular choices for module architecture that yield much better faithfulness, at a minimal cost to accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源