论文标题
$ \ overline {\ mathcal {m}} _ {22} $和$ \ overline {\ Mathcal {m}} _ {23} $的Kodaira尺寸
The Kodaira dimensions of $\overline{\mathcal{M}}_{22}$ and $\overline{\mathcal{M}}_{23}$
论文作者
论文摘要
我们证明22和23属曲线的模量空间是一般类型的。为此,我们计算了与Quadrats关系6的线性系列相关的小坡度的某些虚拟分裂类别。然后,我们开发用于研究线性系列和四边形独立性的新热带方法,并表明这些虚拟类别由有效的除数表示。
We prove that the moduli spaces of curves of genus 22 and 23 are of general type. To do this, we calculate certain virtual divisor classes of small slope associated to linear series of rank 6 with quadric relations. We then develop new tropical methods for studying linear series and independence of quadrics and show that these virtual classes are represented by effective divisors.