论文标题
现在是时候对如何在GP中对抗膨胀的新观点了
It is Time for New Perspectives on How to Fight Bloat in GP
论文作者
论文摘要
进化算法的当前和未来取决于现代平行和分布式计算基础架构的正确使用。尽管仍然存在顺序的方法主导着景观,但可用的多核,多核和分布式系统将使用户和研究人员更频繁地部署算法的并行版本。在这种情况下,在进行对个人的平行评估时节省的时间会产生新的可能性。这次节省在遗传编程中特别重要。本文研究评估时间不仅如何影响平行/分布式系统中解决方案的时间,而且还可能影响人群中个体的大小演变,并最终会降低膨胀现象的GP特征。本文在设计一种更自然的方法来打击膨胀时将时间和空间视为单个硬币的两个方面。这种新的视角使我们能够理解可以得出膨胀控制的新方法,并描述和测试了这种方法的第一个。实验数据证实了方法的强度:使用计算时间作为衡量个体复杂性的量度,可以控制遗传编程个体的大小的增长。
The present and future of evolutionary algorithms depends on the proper use of modern parallel and distributed computing infrastructures. Although still sequential approaches dominate the landscape, available multi-core, many-core and distributed systems will make users and researchers to more frequently deploy parallel version of the algorithms. In such a scenario, new possibilities arise regarding the time saved when parallel evaluation of individuals are performed. And this time saving is particularly relevant in Genetic Programming. This paper studies how evaluation time influences not only time to solution in parallel/distributed systems, but may also affect size evolution of individuals in the population, and eventually will reduce the bloat phenomenon GP features. This paper considers time and space as two sides of a single coin when devising a more natural method for fighting bloat. This new perspective allows us to understand that new methods for bloat control can be derived, and the first of such a method is described and tested. Experimental data confirms the strength of the approach: using computing time as a measure of individuals' complexity allows to control the growth in size of genetic programming individuals.