论文标题
湍流建模的数据驱动方法
A Data-driven Approach for Turbulence Modeling
论文作者
论文摘要
数据驱动的湍流建模是核电站热液压模拟(NPP)的新出现的研究区域。 NPP热液压模拟中使用的最常见的CFD方法是雷诺平均的Navier-Stokes(RANS)方法,该方法仍然确认不仅在计算速度中,而且在选择不同流动模式的湍流模型和参数的复杂性中都承认了缺陷。数据驱动的湍流建模旨在开发一种基于RANS的方法,该方法不仅在计算上有效,而且适用于不同的流程模式。为了实现这一目标,第一步是开发一种方法,以适当地执行选定的流程模式。在这项工作中,选择了一种机器学习方法来实现此目标。 这项研究的主要目的是执行数据驱动的方法,以模拟湍流雷诺(Reynolds)的压力,以利用大规模直接数值模拟(DNS)数据的潜力。该方法通过湍流流验证案例验证:平行平面准稳态湍流流情况。 这项工作包含三个部分。第一部分是数据库准备。在此步骤中,从DNS结果中提取了湍流特性(Reynolds应力),这些结果被认为是“物理上正确的数据”。同时,从RANS结果中提取流量,这些结果被认为是“要纠正的数据”。第二部分是替代模型建立。在此步骤中,从上一步获得的流量特征和湍流属性之间训练了数据驱动的回归函数。最后一部分是模型验证,它将经过训练的数据驱动回归函数应用于测试用例以验证该方法。
Data-driven turbulence modeling is a newly emerged research area in thermal hydraulics simulation of nuclear power plant (NPP). The most common CFD method used in NPP thermal hydraulics simulation is Reynolds-averaged Navier-Stokes (RANS) method, which still has acknowledged deficiencies not only in the calculation speed but also in the complexity of choosing turbulence model and parameters for different flow patterns. Data-driven turbulence modeling aims to develop a RANS-based method which not only computationally efficient but also applicable to different flow patterns. To achieve this goal, the first step is to develop an approach to properly perform RANS for selected flow patterns. In this work, a machine learning approach is selected to achieve this goal. The main purpose of this study is to perform a data-driven approach to model turbulence Reynolds stress leveraging the potential of massive direct numerical simulation (DNS) data. The approach is validated by a turbulence flow validation case: a parallel plane quasi-steady state turbulence flow case. The work contains three parts. The first part is database preparation. In this step, turbulence properties (Reynolds stress) are extracted from DNS results, which are considered as "physically correct data". Meanwhile, flow features are extracted from RANS results, which are considered as "data to be corrected". The second part is surrogate model establishment. In this step, a data-driven regression function is trained between flow features and turbulence properties obtained from the previous step. The last part is model validation, which is applying trained data-driven regression function to a test case to validate this approach.