论文标题

改进的绑定以在随机流中匹配

Improved Bound for Matching in Random-Order Streams

论文作者

Bernstein, Aaron

论文摘要

我们研究了在边缘以\ emph {Random}顺序到达时,在半流模型中计算大约最大基数匹配的问题。在半流模型中,输入图g =(v,e)的边缘作为流E_1,...,E_M给出,允许算法在使用$ O(N \ textrm {polylog}(n)(n))$ Space($ m = | e | e | $ n = | $ n = | $)的同时,在此流中进行单个通过。如果边的顺序是对手的,那么一种简单的单通行贪婪算法会在$ O(n)$ space中产生$ 1/2 $ - APPRXIMATION;在对抗流中实现更好的近似值仍然是一个难以捉摸的悬而未决的问题。 最近的一系列工作表明,如果流的边缘以随机顺序到达,则可以改善$ 1/2 $ - approximation。该模型的艺术状态是两倍:Assadi等。 [SODA 2019]显示如何计算$ 2/3(\ sim.66)$ - 近似匹配,但是空间要求为$ O(n^{1.5} \ textrm {polylog}(n))$。最近,Farhadi等人。 [SODA 2020]提出了一种算法,其所需的空间使用$ O(n \ textrm {polylog}(n))$,但近似值的近似值为$ 6/11(\ sim.545)$,或$ 3/5(= .6)$ in Bipertite图中。 在本文中,我们提出了一种算法,该算法计算$ 2/3(\ sim.66)$ - 仅使用$ o(n \ log(n))$空间的近似匹配,从而在上述两个结果上都改善了。我们还注意到,对于对抗流,Kapralov [Soda 2013]的下限表明,任何实现$ 1-1/e(\ sim.63)$ - 近似值的算法需要$(n^{1+ω(1/\ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log \ log(n))})$ space。我们的随机顺序流是第一个超越对抗阶的下限的结果,从而确定在随机阶流中,计算最大匹配性比较容易。

We study the problem of computing an approximate maximum cardinality matching in the semi-streaming model when edges arrive in a \emph{random} order. In the semi-streaming model, the edges of the input graph G = (V,E) are given as a stream e_1, ..., e_m, and the algorithm is allowed to make a single pass over this stream while using $O(n \textrm{polylog}(n))$ space ($m = |E|$ and $n = |V|$). If the order of edges is adversarial, a simple single-pass greedy algorithm yields a $1/2$-approximation in $O(n)$ space; achieving a better approximation in adversarial streams remains an elusive open question. A line of recent work shows that one can improve upon the $1/2$-approximation if the edges of the stream arrive in a random order. The state of the art for this model is two-fold: Assadi et al. [SODA 2019] show how to compute a $2/3(\sim.66)$-approximate matching, but the space requirement is $O(n^{1.5} \textrm{polylog}(n))$. Very recently, Farhadi et al. [SODA 2020] presented an algorithm with the desired space usage of $O(n \textrm{polylog}(n))$, but a worse approximation ratio of $6/11(\sim.545)$, or $3/5(=.6)$ in bipartite graphs. In this paper, we present an algorithm that computes a $2/3(\sim.66)$-approximate matching using only $O(n \log(n))$ space, improving upon both results above. We also note that for adversarial streams, a lower bound of Kapralov [SODA 2013] shows that any algorithm that achieves a $1-1/e(\sim.63)$-approximation requires $(n^{1+Ω(1/\log\log(n))})$ space. Our result for random-order streams is the first to go beyond the adversarial-order lower bound, thus establishing that computing a maximum matching is provably easier in random-order streams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源