论文标题

来自动物传播标签的Argos位置快速质量控制的连续时间空间模型

A continuous-time state-space model for rapid quality-control of Argos locations from animal-borne tags

论文作者

Jonsen, Ian D., Patterson, Toby A., Costa, Daniel P., Doherty, Philip D., Godley, Brendan J., Grecian, W. James, Guinet, Christophe, Hoenner, Xavier, Kienle, Sarah S., Robison, Patrick W., Votier, Stephen C., Witt, Matthew J., Hindell, Mark A., Harcourt, Robert G., McMahon, Clive R.

论文摘要

州空间模型是容易发生动物运动数据质量控制的重要工具。 Argos卫星系统的接近实时(24 h)能力通过通知动物进入密集使用区域来帮助人类活动的动态海洋管理。这种能力还有助于在操作海洋预测模型中使用动物传感器的海洋观测。这种接近的实时数据提供需要快速,可靠的质量控制才能处理容易出错的Argos位置。我们为三种类型的Argos位置数据(最小二乘,Kalman Filter和Kalman更平滑)制定了连续的状态空间模型,这是关于观察值不规则时机的考虑。我们的模型故意简单,以确保对ARGOS数据的自动化,接近实时质量控制的速度和可靠性。我们通过拟合从7个海洋脊椎动物的61个个体收集的ARGO数据来验证模型,并将模型估计的位置与GPS位置进行比较。估计准确性的中位根平方误差的物种之间的估计准确性通常<5 km,并且随着数据采样率的增加和ARGOS位置的精度而降低。包括一个模型参数膨胀Argos误差椭圆大小会导致更准确的位置估计值。在某些情况下,该模型明显提高了Argos Kalman的准确性,如果更顺畅地使用所有可用信息,则不可能是不可能的。我们的模型提供了来自Argos最小二乘或Kalman滤波器数据的质量控制位置,其精度比Argos Kalman稍好,而Kalman仅通过重新处理才能获得。简单性和易用性使该模型既适合近实时ARGOS数据的自动质量控制,又适合于使用历史ARGOS数据的研究人员手动使用。

State-space models are important tools for quality control of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system aids dynamic ocean management of human activities by informing when animals enter intensive use zones. This capability also facilitates use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations. We formulate a continuous-time state-space model for the three types of Argos location data (Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos data. We validate the model by fitting to Argos data collected from 61 individuals across 7 marine vertebrates and compare model-estimated locations to GPS locations. Estimation accuracy varied among species with median Root Mean Squared Errors usually < 5 km and decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate Argos error ellipse sizes resulted in more accurate location estimates. In some cases, the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be possible if the smoother uses all available information. Our model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with slightly better accuracy than Argos Kalman smoother data that are only available via reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time Argos data and for manual use by researchers working with historical Argos data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源