论文标题

了解视频预测的感知质量

Understanding the Perceived Quality of Video Predictions

论文作者

Somraj, Nagabhushan, Kashi, Manoj Surya, Arun, S. P., Soundararajan, Rajiv

论文摘要

视频预测模型的研究被认为是视频表示学习的基本方法。尽管有很多用于预测过去几个帧的生成模型,但对预测帧的定量评估非常具有挑战性。在这种情况下,我们研究了预测视频的质量评估问题。我们创建了印度科学研究所预测视频质量评估(IISC PVQA)数据库,该数据库由300个视频组成,通过在不同数据集中应用不同的预测模型获得,并随附人类的意见分数。我们从50名人类参与者中收集了这些视频的主观评级。我们的主观研究表明,人类观察者在对预测视频的质量质量的判断中高度一致。我们基准了几种用于评估视频预测的措施,并表明它们与这些主观分数没有足够的相关性。我们介绍了两个新功能,以有效地捕获预测视频的质量,具有过去帧的预测帧的深度特征的运动补偿相似性,以及从重新制定的框架差异中提取的深度功能。我们表明,根据IISC PVQA数据库中的人类判断,我们的功能设计导​​致了最先进的质量预测。数据库和代码可在我们的项目网站上公开可用:https://nagabhushansn95.github.io/publications/2020/pvqa

The study of video prediction models is believed to be a fundamental approach to representation learning for videos. While a plethora of generative models for predicting the future frame pixel values given the past few frames exist, the quantitative evaluation of the predicted frames has been found to be extremely challenging. In this context, we study the problem of quality assessment of predicted videos. We create the Indian Institute of Science Predicted Videos Quality Assessment (IISc PVQA) Database consisting of 300 videos, obtained by applying different prediction models on different datasets, and accompanying human opinion scores. We collected subjective ratings of quality from 50 human participants for these videos. Our subjective study reveals that human observers were highly consistent in their judgments of quality of predicted videos. We benchmark several popularly used measures for evaluating video prediction and show that they do not adequately correlate with these subjective scores. We introduce two new features to effectively capture the quality of predicted videos, motion-compensated cosine similarities of deep features of predicted frames with past frames, and deep features extracted from rescaled frame differences. We show that our feature design leads to state of the art quality prediction in accordance with human judgments on our IISc PVQA Database. The database and code are publicly available on our project website: https://nagabhushansn95.github.io/publications/2020/pvqa

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源