论文标题

$ \ sim的自动目录$ \ sim $ 1400万VVV光曲线:传统的机器学习能力多远?

Automatic Catalog of RRLyrae from $\sim$ 14 million VVV Light Curves: How far can we go with traditional machine-learning?

论文作者

Cabral, Juan B., Ramos, Felipe, Gurovich, Sebastián, Granitto, Pablo

论文摘要

使用rrlyrae(RRL)创建凸起的3D地图是VVV(x)调查的主要目标之一。分析中的大量资源要求使用自动程序。在这种情况下,以前的工作引入了机器学习(ML)方法对可变恒星分类的使用。我们的目标是基于ML的自动程序的开发和分析,以识别VVV调查中的RRL。此过程将用于生成在调查中几个瓷砖上集成的可靠目录。重建光曲线后,我们提取一组基于时期和强度的特征。我们首次使用伪颜色功能的新子集。我们讨论定义自动管道所需的所有适当步骤:选择质量措施;抽样程序;分类器设置和模型选择。作为最终结果,我们构建了一个合奏分类器,平均召回率为0.48,平均精度为15英尺的平均精度为0.86。我们还提供了处理后的数据集和候选RRL的目录。从基于光度宽带数据的分类角度来看,也许最有趣的是,我们的结果表明颜色是RRL的一种信息特征类型,应考虑通过ML自动分类方法。我们还认为,表和曲线的回忆和精度都是这个高度不平衡问题的高质量指标。此外,我们为VVV数据集显示出,要获得良好的估计,重要的是使用原始分布比减少具有人工平衡的样本更重要。最后,我们表明,合奏分类器的使用有助于解决关键的模型选择步骤,并且识别RRL的大多数错误与某些来源的低质量观察结果或难以解决给定日期的RRL-C类型有关。

The creation of a 3D map of the bulge using RRLyrae (RRL) is one of the main goals of the VVV(X) surveys. The overwhelming number of sources under analysis request the use of automatic procedures. In this context, previous works introduced the use of Machine Learning (ML) methods for the variable star classification. Our goal is the development and analysis of an automatic procedure, based on ML, for the identification of RRLs in the VVV Survey. This procedure will be use to generate reliable catalogs integrated over several tiles in the survey. After the reconstruction of light-curves, we extract a set of period and intensity-based features. We use for the first time a new subset of pseudo color features. We discuss all the appropriate steps needed to define our automatic pipeline: selection of quality measures; sampling procedures; classifier setup and model selection. As final result, we construct an ensemble classifier with an average Recall of 0.48 and average Precision of 0.86 over 15 tiles. We also make available our processed datasets and a catalog of candidate RRLs. Perhaps most interestingly, from a classification perspective based on photometric broad-band data, is that our results indicate that Color is an informative feature type of the RRL that should be considered for automatic classification methods via ML. We also argue that Recall and Precision in both tables and curves are high quality metrics for this highly imbalanced problem. Furthermore, we show for our VVV data-set that to have good estimates it is important to use the original distribution more than reduced samples with an artificial balance. Finally, we show that the use of ensemble classifiers helps resolve the crucial model selection step, and that most errors in the identification of RRLs are related to low quality observations of some sources or to the difficulty to resolve the RRL-C type given the date.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源