论文标题

捉迷藏:可解释AI的模板

Hide-and-Seek: A Template for Explainable AI

论文作者

Tagaris, Thanos, Stafylopatis, Andreas

论文摘要

缺乏透明度的是神经网络及其在行业中的广泛采用。尽管有很大的兴趣,但这种缺点尚未得到充分解决。这项研究提出了一个名为“捉迷藏”(HNS)的新型框架,用于培训可解释的神经网络,并为探索和比较类似思想建立了理论基础。广泛的实验表明,可以将高度的可解释性归因于神经网络,而无需牺牲其预测能力。

Lack of transparency has been the Achilles heal of Neural Networks and their wider adoption in industry. Despite significant interest this shortcoming has not been adequately addressed. This study proposes a novel framework called Hide-and-Seek (HnS) for training Interpretable Neural Networks and establishes a theoretical foundation for exploring and comparing similar ideas. Extensive experimentation indicates that a high degree of interpretability can be imputed into Neural Networks, without sacrificing their predictive power.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源