论文标题
较高的凸度和迭代的总和集
Higher convexity and iterated sum sets
论文作者
论文摘要
让$ f $是一个平稳的真实功能,严格单调首先$ k $衍生品。我们表明,对于有限集$ a $,带有$ | a+a | \ leq k | a | $,$ | 2^kf(a) - (2^k-1) - (2^k-1)f(a)| \ gg_k | a | a |^k+1-o(1)}/k^{o_k(1)} $。我们推断出几种新的总产品类型的含义,例如$ a+a $很小,意味着在很多次迭代产品中,无限的增长设置为$ a \ cdots a $。
Let $f$ be a smooth real function with strictly monotone first $k$ derivatives. We show that for a finite set $A$, with $|A+A|\leq K|A|$, $|2^kf(A)-(2^k-1)f(A)|\gg_k |A|^{k+1-o(1)}/K^{O_k(1)}$. We deduce several new sum-product type implications, e.g. that $A+A$ being small implies unbounded growth for a many enough times iterated product set $A \cdots A$.