论文标题
进化库拉莫托动力学
Evolutionary Kuramoto Dynamics
论文作者
论文摘要
可同步振荡系统的常见模型由由微分方程集合控制的耦合振荡器组成。无处不在的库拉莫托模型依赖于{\ em先验的固定连接模式,促进了振荡器之间的相互通信和影响。在生物同步系统中,像哺乳动物上张核核一样,实现交流是有代价的 - 生物体消耗了能量创造和维护系统 - 将它们的发展与进化选择联系起来。在这里,我们介绍并分析了一个新的进化游戏理论框架,以建模耦合振荡器系统的行为和演变。我们模型中的每个振荡器的特征是一对动态行为特征:振荡阶段以及它们是否与其他振荡器进行连接和通信。系统的演变沿着这些维度发生,从而使振荡器可以改变其相位和/或交流策略。我们通过将相位同步与生物体与振荡器之间创造和维持连接的成本进行比较,通过比较相位同步的益处来衡量突变的成功。尽管进行了如此简单的设置,但该系统表现出丰富的非平凡行为,模仿了不同的古典游戏 - 随着振荡器的景观随着时间的推移而变化,模仿了囚犯的困境,雪花游戏和协调游戏。尽管如此复杂,但我们发现通过连通性和通信对同步的简单表征令人惊讶地简单:如果同步$ b(0)$的好处大于成本$ c $,$ b(0)> 2c $的两倍,则有机体将发展为完整的通信和相位同步。综上所述,我们的模型证明了对同步振荡系统的存在及其整体连通性的可能限制。
Common models of synchronizable oscillatory systems consist of a collection of coupled oscillators governed by a collection of differential equations. The ubiquitous Kuramoto models rely on an {\em a priori} fixed connectivity pattern facilitates mutual communication and influence between oscillators. In biological synchronizable systems, like the mammalian suprachaismatic nucleus, enabling communication comes at a cost -- the organism expends energy creating and maintaining the system -- linking their development to evolutionary selection. Here, we introduce and analyze a new evolutionary game theoretic framework modeling the behavior and evolution of systems of coupled oscillators. Each oscillator in our model is characterized by a pair of dynamic behavioral traits: an oscillatory phase and whether they connect and communicate to other oscillators or not. Evolution of the system occurs along these dimensions, allowing oscillators to change their phases and/or their communication strategies. We measure success of mutations by comparing the benefit of phase synchronization to the organism balanced against the cost of creating and maintaining connections between the oscillators. Despite such a simple setup, this system exhibits a wealth of nontrivial behaviors, mimicking different classical games -- the Prisoner's Dilemma, the snowdrift game, and coordination games -- as the landscape of the oscillators changes over time. Despite such complexity, we find a surprisingly simple characterization of synchronization through connectivity and communication: if the benefit of synchronization $B(0)$ is greater than twice the cost $c$, $B(0) > 2c$, the organism will evolve towards complete communication and phase synchronization. Taken together, our model demonstrates possible evolutionary constraints on both the existence of a synchronized oscillatory system and its overall connectivity.