论文标题
模拟极端时间相关性
Simulating extremal temporal correlations
论文作者
论文摘要
由单个量子系统上的顺序测量产生的相关性形成了多对角。这是由箭头(AOT)约束定义的,这意味着测量设置的未来选择不能影响过去的结果。我们讨论了模拟AOT多型的极端要点所需的资源,其中资源是根据最小维度或物理系统的“内部记忆”来量化的。首先,我们分析了对称性下极端点的等效类别。其次,我们表征获得AOT多型的给定极端所需的最小维度,包括在长序列的渐近极限中结合的较低缩放尺度。最后,我们提出了一种基于较短序列的不平等的较长序列的尺寸敏感时间不等式的一般方法,并研究了它们对不完美的鲁棒性。
The correlations arising from sequential measurements on a single quantum system form a polytope. This is defined by the arrow-of-time (AoT) constraints, meaning that future choices of measurement settings cannot influence past outcomes. We discuss the resources needed to simulate the extreme points of the AoT polytope, where resources are quantified in terms of the minimal dimension, or "internal memory" of the physical system. First, we analyze the equivalence classes of the extreme points under symmetries. Second, we characterize the minimal dimension necessary to obtain a given extreme point of the AoT polytope, including a lower scaling bound in the asymptotic limit of long sequences. Finally, we present a general method to derive dimension-sensitive temporal inequalities for longer sequences, based on inequalities for shorter ones, and investigate their robustness to imperfections.