论文标题
无价拉普拉斯矩阵的主要特征向量
Principal Eigenvector of the Signless Laplacian Matrix
论文作者
论文摘要
在本文中,我们研究了无标志性的HyperGraph的主要特征向量的条目。更确切地说,我们获得了此条目的界限。这些边界是计算的其他重要参数,例如光谱半径,最大程度和最小程度。我们还介绍并研究了与超图边缘有关的新参数。该参数是结构特征的光谱度量,可以将其视为规则性的边缘变化。
In this paper, we study the entries of the principal eigenvector of the signless Laplacian matrix of a hypergraph. More precisely, we obtain bounds for this entries. These bounds are computed trough other important parameters, such as spectral radius, maximum and minimum degree. We also introduce and study a new parameter related to edges of the hypergraph. This parameter is a spectral measure of a structural characteristic that can be thought of as an edge-variant of regularity.