论文标题
Lagrangian空间高斯ANSATZ,用于此问题红移空间功率谱和相关功能
Lagrangian-space Gaussian ansatz for the matter redshift-space power spectrum and correlation function
论文作者
论文摘要
我们研究了对先前工作中引入的Lagrangian Space Gaussian Ansatz的红移空间功率谱和相关功能的预测。该模型是Zeldovich近似的自然延伸,其中位移和速度功率谱由运动方程确定,而不是设置等于线性功率谱。它不包含任何免费参数。至于实际空间统计数据,我们发现这种拉格朗日空间方法对于相关函数比对功率谱的效率要高得多。 BAO振荡的阻尼已经很好地恢复了,但是与功率光谱中的模拟相比,平滑漂移很大。相关函数的多底数在BAO尺度上得到了很好的恢复,准确度为$ 2 \%$,$ 2 \%$,$ξ^s_0 $降低至$ 10 H^{ - 1} $ mpc,$ 3 \%$ $ 3 \%$ for $ξ^s_2 $降低至$ 26 H^{ - 1} $ MPC,$ z $ z $ z \ geq,0.35 $ 0.35 $ \ geq。
We study the predictions for the matter redshift-space power spectrum and correlation function of a Lagrangian-space Gaussian ansatz introduced in a previous work. This model is a natural extension of the Zeldovich approximation, where the displacement and velocity power spectra are determined by the equations of motion, instead of being set equal to the linear power spectrum. It does not contain any free parameter. As for the real-space statistics, we find that this Lagrangian-space approach is much more efficient for the correlation functions than for the power spectra. The damping of the BAO oscillations is well recovered but there is a large smooth drift from the simulations in the power spectra. The multipoles of the correlation functions are well recovered on BAO scales, with an accuracy of $2\%$ for $ξ^s_0$ down to $10 h^{-1}$ Mpc, and of $3\%$ for $ξ^s_2$ down to $26 h^{-1}$ Mpc, at $z \geq 0.35$.