论文标题

在默认的先验方面,可用于强大的贝叶斯估计与分歧

On default priors for robust Bayesian estimation with divergences

论文作者

Nakagawa, Tomoyuki, Hashimoto, Shintaro

论文摘要

本文为基于差异的异常值提供了客观的贝叶斯估计,介绍了客观的先验。最低$γ$ - 差估计量众所周知,可以很好地估计对重污染。近年来,还提出了通过使用基于差异的准阶层分布的稳健贝叶斯方法。在客观的贝叶斯框架中,在此类准阶层分布下选择默认的先验分布是一个重要问题。在这项研究中,我们根据基于$γ$ divergence提供了一些参考和力矩匹配先验的特性。特别是,我们表明,在污染分布的条件下,所提出的先验在污染比的任何条件下都大致健壮。还提供了一些模拟研究。

This paper presents objective priors for robust Bayesian estimation against outliers based on divergences. The minimum $γ$-divergence estimator is well-known to work well estimation against heavy contamination. The robust Bayesian methods by using quasi-posterior distributions based on divergences have been also proposed in recent years. In objective Bayesian framework, the selection of default prior distributions under such quasi-posterior distributions is an important problem. In this study, we provide some properties of reference and moment matching priors under the quasi-posterior distribution based on the $γ$-divergence. In particular, we show that the proposed priors are approximately robust under the condition on the contamination distribution without assuming any conditions on the contamination ratio. Some simulation studies are also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源