论文标题

用深神经网络对天文瞬变的图像序列进行分类

Classifying Image Sequences of Astronomical Transients with Deep Neural Networks

论文作者

Gómez, Catalina, Neira, Mauricio, Hoyos, Marcela Hernández, Arbeláez, Pablo, Forero-Romero, Jaime E.

论文摘要

将天文图像的时间序列分类为有意义的瞬态天体物理现象已被认为是一个严重的问题,因为它需要人类专家的干预。分类器使用专家的知识来查找启发式功能来处理图像,例如,通过执行图像减法或提取稀疏信息,例如磁通时间序列,也称为光曲线。我们提出了一种成功的深度学习方法,该方法直接从成像数据中学习。我们的方法模型明确具有深度卷积神经网络和门控复发单元的时空模式。我们使用来自Catalina实时瞬态调查的130万个真实天文图像训练这些深神网络,以将序列分为五种不同类型的天文瞬态类别。 TAO-NET(对于瞬态天文对象网络)架构的表现优于光曲线上的随机森林分类的​​结果,该结果由每个类别的F1分数衡量。上课的平均f1从$ 45 \%$带有随机森林分类的​​$ 55 \%$,带有tao-net。 TAO-NET的这一成就为开发新的深度学习架构以进行早期瞬态检测开辟了可能性。我们提供了培训数据集和Tao-NET的训练型号,以允许将来扩展这项工作。

Supervised classification of temporal sequences of astronomical images into meaningful transient astrophysical phenomena has been considered a hard problem because it requires the intervention of human experts. The classifier uses the expert's knowledge to find heuristic features to process the images, for instance, by performing image subtraction or by extracting sparse information such as flux time series, also known as light curves. We present a successful deep learning approach that learns directly from imaging data. Our method models explicitly the spatio-temporal patterns with Deep Convolutional Neural Networks and Gated Recurrent Units. We train these deep neural networks using 1.3 million real astronomical images from the Catalina Real-Time Transient Survey to classify the sequences into five different types of astronomical transient classes. The TAO-Net (for Transient Astronomical Objects Network) architecture outperforms the results from random forest classification on light curves by 10 percentage points as measured by the F1 score for each class; the average F1 over classes goes from $45\%$ with random forest classification to $55\%$ with TAO-Net. This achievement with TAO-Net opens the possibility to develop new deep learning architectures for early transient detection. We make available the training dataset and trained models of TAO-Net to allow for future extensions of this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源